Twitter Birdwatch is "a collaborative way to add helpful context to Tweets and keep people better informed".
Data collected by the program is made available for download as a trio of TSV files.
You can obtain those files from this page (Twitter login required). The files are:
notes-0000.tsv
ratings-0000.tsv
noteStatusHistory-0000.tsv
As far as I can tell they only include notes and ratings from the past 48 hours. This means the files are quite small - when I downloaded them on 3rd September 2022 they were:
2.7M noteStatusHistory-00000.tsv
16M notes-00000.tsv
45M ratings-00000.tsv
I used sqlite-utils insert to insert the data into a birdwatch.db
SQLite database:
sqlite-utils insert birdwatch.db notes notes-00000.tsv --tsv --detect-types
sqlite-utils insert birdwatch.db ratings ratings-00000.tsv --tsv --detect-types
sqlite-utils insert birdwatch.db noteStatusHistory noteStatusHistory-00000.tsv --tsv --detect-types
The --detect-types
option ensures we get a mix of integer
and text
columns - without this we would just get text
.
Having run this, the schema of the resulting database file looks like this:
sqlite-utils schema birdwatch.db
CREATE TABLE "notes" (
[noteId] INTEGER,
[participantId] TEXT,
[createdAtMillis] INTEGER,
[tweetId] INTEGER,
[classification] TEXT,
[believable] TEXT,
[harmful] TEXT,
[validationDifficulty] TEXT,
[misleadingOther] INTEGER,
[misleadingFactualError] INTEGER,
[misleadingManipulatedMedia] INTEGER,
[misleadingOutdatedInformation] INTEGER,
[misleadingMissingImportantContext] INTEGER,
[misleadingUnverifiedClaimAsFact] INTEGER,
[misleadingSatire] INTEGER,
[notMisleadingOther] INTEGER,
[notMisleadingFactuallyCorrect] INTEGER,
[notMisleadingOutdatedButNotWhenWritten] INTEGER,
[notMisleadingClearlySatire] INTEGER,
[notMisleadingPersonalOpinion] INTEGER,
[trustworthySources] INTEGER,
[summary] TEXT
);
CREATE TABLE "ratings" (
[noteId] INTEGER,
[participantId] TEXT,
[createdAtMillis] INTEGER,
[version] INTEGER,
[agree] INTEGER,
[disagree] INTEGER,
[helpful] INTEGER,
[notHelpful] INTEGER,
[helpfulnessLevel] TEXT,
[helpfulOther] INTEGER,
[helpfulInformative] INTEGER,
[helpfulClear] INTEGER,
[helpfulEmpathetic] INTEGER,
[helpfulGoodSources] INTEGER,
[helpfulUniqueContext] INTEGER,
[helpfulAddressesClaim] INTEGER,
[helpfulImportantContext] INTEGER,
[helpfulUnbiasedLanguage] INTEGER,
[notHelpfulOther] INTEGER,
[notHelpfulIncorrect] INTEGER,
[notHelpfulSourcesMissingOrUnreliable] INTEGER,
[notHelpfulOpinionSpeculationOrBias] INTEGER,
[notHelpfulMissingKeyPoints] INTEGER,
[notHelpfulOutdated] INTEGER,
[notHelpfulHardToUnderstand] INTEGER,
[notHelpfulArgumentativeOrBiased] INTEGER,
[notHelpfulOffTopic] INTEGER,
[notHelpfulSpamHarassmentOrAbuse] INTEGER,
[notHelpfulIrrelevantSources] INTEGER,
[notHelpfulOpinionSpeculation] INTEGER,
[notHelpfulNoteNotNeeded] INTEGER
);
CREATE TABLE "noteStatusHistory" (
[noteId] INTEGER,
[participantId] TEXT,
[createdAtMillis] INTEGER,
[timestampMillisOfFirstNonNMRStatus] INTEGER,
[firstNonNMRStatus] TEXT,
[timestampMillisOfCurrentStatus] INTEGER,
[currentStatus] TEXT,
[timestampMillisOfMostRecentNonNMRStatus] INTEGER,
[mostRecentNonNMRStatus] TEXT
);
The summary
column in the notes
table is the most interesting with respect to search. We can enable SQLite full-text search on it like this:
sqlite-utils enable-its birdwatch.db notes summary
The Birdwatch data includes plenty of tweet IDs - in the tweetId
column in the notes
table - but it doesn't include the full details of those tweets.
If you have old credentials for v1 of the Twitter API you can use twitter-to-sqlite to download the full details of those tweets like this:
twitter-to-sqlite statuses-lookup birdwatch.db --sql 'select distinct tweetId from notes'
This fetches full tweets (and authors and attachments and suchlike) for every tweet with an ID matching one from the SQL query select distinct tweetId from notes
.
This command shows a progress bar while it works:
Importing 27,909 tweets [#####-------------------] 17% 00:10:26
If you don't have Twitter APIv1 credentials consider using twarc instead (maybe with this plugin).
The final database schema looks like this:
CREATE TABLE "notes" (
[noteId] INTEGER,
[participantId] TEXT,
[createdAtMillis] INTEGER,
[tweetId] INTEGER,
[classification] TEXT,
[believable] TEXT,
[harmful] TEXT,
[validationDifficulty] TEXT,
[misleadingOther] INTEGER,
[misleadingFactualError] INTEGER,
[misleadingManipulatedMedia] INTEGER,
[misleadingOutdatedInformation] INTEGER,
[misleadingMissingImportantContext] INTEGER,
[misleadingUnverifiedClaimAsFact] INTEGER,
[misleadingSatire] INTEGER,
[notMisleadingOther] INTEGER,
[notMisleadingFactuallyCorrect] INTEGER,
[notMisleadingOutdatedButNotWhenWritten] INTEGER,
[notMisleadingClearlySatire] INTEGER,
[notMisleadingPersonalOpinion] INTEGER,
[trustworthySources] INTEGER,
[summary] TEXT
);
CREATE TABLE "ratings" (
[noteId] INTEGER,
[participantId] TEXT,
[createdAtMillis] INTEGER,
[version] INTEGER,
[agree] INTEGER,
[disagree] INTEGER,
[helpful] INTEGER,
[notHelpful] INTEGER,
[helpfulnessLevel] TEXT,
[helpfulOther] INTEGER,
[helpfulInformative] INTEGER,
[helpfulClear] INTEGER,
[helpfulEmpathetic] INTEGER,
[helpfulGoodSources] INTEGER,
[helpfulUniqueContext] INTEGER,
[helpfulAddressesClaim] INTEGER,
[helpfulImportantContext] INTEGER,
[helpfulUnbiasedLanguage] INTEGER,
[notHelpfulOther] INTEGER,
[notHelpfulIncorrect] INTEGER,
[notHelpfulSourcesMissingOrUnreliable] INTEGER,
[notHelpfulOpinionSpeculationOrBias] INTEGER,
[notHelpfulMissingKeyPoints] INTEGER,
[notHelpfulOutdated] INTEGER,
[notHelpfulHardToUnderstand] INTEGER,
[notHelpfulArgumentativeOrBiased] INTEGER,
[notHelpfulOffTopic] INTEGER,
[notHelpfulSpamHarassmentOrAbuse] INTEGER,
[notHelpfulIrrelevantSources] INTEGER,
[notHelpfulOpinionSpeculation] INTEGER,
[notHelpfulNoteNotNeeded] INTEGER
);
CREATE TABLE "noteStatusHistory" (
[noteId] INTEGER,
[participantId] TEXT,
[createdAtMillis] INTEGER,
[timestampMillisOfFirstNonNMRStatus] INTEGER,
[firstNonNMRStatus] TEXT,
[timestampMillisOfCurrentStatus] INTEGER,
[currentStatus] TEXT,
[timestampMillisOfMostRecentNonNMRStatus] INTEGER,
[mostRecentNonNMRStatus] TEXT
);
CREATE TABLE 'notes_fts_data'(id INTEGER PRIMARY KEY, block BLOB);
CREATE TABLE 'notes_fts_idx'(segid, term, pgno, PRIMARY KEY(segid, term)) WITHOUT ROWID;
CREATE TABLE 'notes_fts_docsize'(id INTEGER PRIMARY KEY, sz BLOB);
CREATE TABLE 'notes_fts_config'(k PRIMARY KEY, v) WITHOUT ROWID;
CREATE TABLE [migrations] (
[name] TEXT PRIMARY KEY,
[applied] TEXT
);
CREATE TABLE [places] (
[id] TEXT PRIMARY KEY
, [url] TEXT, [place_type] TEXT, [name] TEXT, [full_name] TEXT, [country_code] TEXT, [country] TEXT, [contained_within] TEXT, [bounding_box] TEXT, [attributes] TEXT);
CREATE TABLE [sources] (
[id] TEXT PRIMARY KEY,
[name] TEXT,
[url] TEXT
);
CREATE TABLE [users] (
[id] INTEGER PRIMARY KEY,
[screen_name] TEXT,
[name] TEXT,
[description] TEXT,
[location] TEXT
, [url] TEXT, [protected] INTEGER, [followers_count] INTEGER, [friends_count] INTEGER, [listed_count] INTEGER, [created_at] TEXT, [favourites_count] INTEGER, [utc_offset] TEXT, [time_zone] TEXT, [geo_enabled] INTEGER, [verified] INTEGER, [statuses_count] INTEGER, [lang] TEXT, [contributors_enabled] INTEGER, [is_translator] INTEGER, [is_translation_enabled] INTEGER, [profile_background_color] TEXT, [profile_background_image_url] TEXT, [profile_background_image_url_https] TEXT, [profile_background_tile] INTEGER, [profile_image_url] TEXT, [profile_image_url_https] TEXT, [profile_banner_url] TEXT, [profile_link_color] TEXT, [profile_sidebar_border_color] TEXT, [profile_sidebar_fill_color] TEXT, [profile_text_color] TEXT, [profile_use_background_image] INTEGER, [has_extended_profile] INTEGER, [default_profile] INTEGER, [default_profile_image] INTEGER, [following] INTEGER, [follow_request_sent] INTEGER, [notifications] INTEGER, [translator_type] TEXT, [withheld_in_countries] TEXT);
CREATE TABLE 'users_fts_data'(id INTEGER PRIMARY KEY, block BLOB);
CREATE TABLE 'users_fts_idx'(segid, term, pgno, PRIMARY KEY(segid, term)) WITHOUT ROWID;
CREATE TABLE 'users_fts_docsize'(id INTEGER PRIMARY KEY, sz BLOB);
CREATE TABLE 'users_fts_config'(k PRIMARY KEY, v) WITHOUT ROWID;
CREATE TABLE [tweets] (
[id] INTEGER PRIMARY KEY,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[full_text] TEXT,
[retweeted_status] INTEGER,
[quoted_status] INTEGER,
[place] TEXT REFERENCES [places]([id]),
[source] TEXT REFERENCES [sources]([id]), [truncated] INTEGER, [display_text_range] TEXT, [in_reply_to_status_id] TEXT, [in_reply_to_user_id] TEXT, [in_reply_to_screen_name] TEXT, [geo] TEXT, [coordinates] TEXT, [contributors] TEXT, [is_quote_status] INTEGER, [retweet_count] INTEGER, [favorite_count] INTEGER, [favorited] INTEGER, [retweeted] INTEGER, [lang] TEXT, [possibly_sensitive] INTEGER, [scopes] TEXT, [withheld_in_countries] TEXT, [withheld_scope] TEXT, [withheld_copyright] INTEGER,
FOREIGN KEY([retweeted_status]) REFERENCES [tweets]([id]),
FOREIGN KEY([quoted_status]) REFERENCES [tweets]([id])
);
CREATE TABLE 'tweets_fts_data'(id INTEGER PRIMARY KEY, block BLOB);
CREATE TABLE 'tweets_fts_idx'(segid, term, pgno, PRIMARY KEY(segid, term)) WITHOUT ROWID;
CREATE TABLE 'tweets_fts_docsize'(id INTEGER PRIMARY KEY, sz BLOB);
CREATE TABLE 'tweets_fts_config'(k PRIMARY KEY, v) WITHOUT ROWID;
CREATE VIRTUAL TABLE [notes_fts] USING FTS5 (
[summary],
content=[notes]
);
CREATE TRIGGER [notes_ai] AFTER INSERT ON [notes] BEGIN
INSERT INTO [notes_fts] (rowid, [summary]) VALUES (new.rowid, new.[summary]);
END;
CREATE TRIGGER [notes_ad] AFTER DELETE ON [notes] BEGIN
INSERT INTO [notes_fts] ([notes_fts], rowid, [summary]) VALUES('delete', old.rowid, old.[summary]);
END;
CREATE TRIGGER [notes_au] AFTER UPDATE ON [notes] BEGIN
INSERT INTO [notes_fts] ([notes_fts], rowid, [summary]) VALUES('delete', old.rowid, old.[summary]);
INSERT INTO [notes_fts] (rowid, [summary]) VALUES (new.rowid, new.[summary]);
END;
CREATE VIRTUAL TABLE [users_fts] USING FTS5 (
[name], [screen_name], [description], [location],
content=[users]
);
CREATE TRIGGER [users_ai] AFTER INSERT ON [users] BEGIN
INSERT INTO [users_fts] (rowid, [name], [screen_name], [description], [location]) VALUES (new.rowid, new.[name], new.[screen_name], new.[description], new.[location]);
END;
CREATE TRIGGER [users_ad] AFTER DELETE ON [users] BEGIN
INSERT INTO [users_fts] ([users_fts], rowid, [name], [screen_name], [description], [location]) VALUES('delete', old.rowid, old.[name], old.[screen_name], old.[description], old.[location]);
END;
CREATE TRIGGER [users_au] AFTER UPDATE ON [users] BEGIN
INSERT INTO [users_fts] ([users_fts], rowid, [name], [screen_name], [description], [location]) VALUES('delete', old.rowid, old.[name], old.[screen_name], old.[description], old.[location]);
INSERT INTO [users_fts] (rowid, [name], [screen_name], [description], [location]) VALUES (new.rowid, new.[name], new.[screen_name], new.[description], new.[location]);
END;
CREATE VIRTUAL TABLE [tweets_fts] USING FTS5 (
[full_text],
content=[tweets]
);
CREATE TRIGGER [tweets_ai] AFTER INSERT ON [tweets] BEGIN
INSERT INTO [tweets_fts] (rowid, [full_text]) VALUES (new.rowid, new.[full_text]);
END;
CREATE TRIGGER [tweets_ad] AFTER DELETE ON [tweets] BEGIN
INSERT INTO [tweets_fts] ([tweets_fts], rowid, [full_text]) VALUES('delete', old.rowid, old.[full_text]);
END;
CREATE TRIGGER [tweets_au] AFTER UPDATE ON [tweets] BEGIN
INSERT INTO [tweets_fts] ([tweets_fts], rowid, [full_text]) VALUES('delete', old.rowid, old.[full_text]);
INSERT INTO [tweets_fts] (rowid, [full_text]) VALUES (new.rowid, new.[full_text]);
END;
CREATE TABLE [following] (
[followed_id] INTEGER REFERENCES [users]([id]),
[follower_id] INTEGER REFERENCES [users]([id]),
[first_seen] TEXT,
PRIMARY KEY ([followed_id], [follower_id])
);
CREATE INDEX [idx_following_followed_id]
ON [following] ([followed_id]);
CREATE INDEX [idx_following_follower_id]
ON [following] ([follower_id]);
CREATE TABLE [since_id_types] (
[id] INTEGER PRIMARY KEY,
[name] TEXT
);
CREATE TABLE [since_ids] (
[type] INTEGER REFERENCES [since_id_types]([id]),
[key] TEXT,
[since_id] INTEGER,
PRIMARY KEY ([type], [key])
);
CREATE TABLE [count_history_types] (
[id] INTEGER PRIMARY KEY,
[name] TEXT
);
CREATE TABLE [count_history] (
[type] INTEGER REFERENCES [count_history_types]([id]),
[user] INTEGER REFERENCES [users]([id]),
[datetime] TEXT,
[count] INTEGER,
PRIMARY KEY ([type], [user], [datetime])
);
CREATE TABLE [media] (
[id] INTEGER PRIMARY KEY,
[id_str] TEXT,
[indices] TEXT,
[media_url] TEXT,
[media_url_https] TEXT,
[url] TEXT,
[display_url] TEXT,
[expanded_url] TEXT,
[type] TEXT,
[sizes] TEXT
, [video_info] TEXT, [additional_media_info] TEXT, [source_status_id] INTEGER, [source_status_id_str] TEXT, [source_user_id] INTEGER, [source_user_id_str] TEXT);
CREATE TABLE [media_tweets] (
[media_id] INTEGER REFERENCES [media]([id]),
[tweets_id] INTEGER REFERENCES [tweets]([id]),
PRIMARY KEY ([media_id], [tweets_id])
);
The resulting database from all of this stores twitter IDs as integers.
If you are processing these using JavaScript, you may run into problems with JavaScript's maximum integer size being 9007199254740991 - some twitter IDs may exceed this.
If this is a problem for you, dropping the --detect-types
options from the initial TSV import should result in IDs being stored as text instead which will work around the issue.
You can use the command-line version of Datasette:
pip install datasette
# OR
brew install datasette
# OR
pipx install datasette
datasette birdwatch.db
INFO: Started server process [58650]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://127.0.0.1:8001 (Press CTRL+C to quit)
Or you can install Datasette Desktop for macOS and double-click the SQLite file to open it.
Created 2022-09-03T08:37:05-07:00, updated 2022-09-03T09:18:41-07:00 · History · Edit